

National Site Assessment Symposium Training Program December 3 through December 7, 2018 Denver, Colorado

Site Assessment Essentials

EPA Region III

Justin Bleiler

Connor O'Loughlin

Lorie Baker

Cathleen Kennedy

Nonresponsive based on revised scope

Connor O'Loughlin Site Assessment Manager EPA, Region 3 (215) 814-3304 oloughlin.connor@epa.gov

CASE STUDY ABOUT PFAS BLADES GROUNDWATER

Introduction to Site Assessment

- EPA conducted a site review in cooperation with and on behalf of the State's VCP program to investigate the PFAS contamination in Blades, DE.
- EPA's removal and site assessment programs responded to the contamination.

Identification of the Blades Site

- EPA conducted a site review as part of the State lead remedial investigations.
- Fumetrol 140 and chromium tetrafluoroborate use at two electroplating facilities.

Targets for the Blades GW Site

Ex. 9 Wells & Ex 6 PII

Impacted:

- Three Public Wells
- Nine Residential Wells
- Sediments of Morgan Branch

Investigation of the Blades Site

- Further assessment is continuing to determine the source(s) of this contamination.
- The contamination from both facilities may be comingled containing PFAS, chromium, and cyanide.

Both facilities have used multiple types of plating

processes.

Site Assessment Photographs

Investigation of the Blades Site

Sample Results

- 3 wells had results exceeding the combined PFOA/PFOS HAL.
 - Drinking Water 193.0, 117.5, and 96.2 (ppt)
- Nine residential wells had concentrations above the HAL. Delaware installed treatment for the wells.
- One residential well had a concentration of 364 ppt.

EPA still conducting assessment of the groundwater plume.

- Known contamination of the groundwater and soil.
- Threats to the surface water (human food chain, wetlands).
- Inadequate controls and no remediation of groundwater to date.
- Abundant potential source soils at the two facilities.

Investigation Considerations and PFAS Facts

Regulation:

- U.S. Environmental Protection Agency (U.S. EPA) drinking water lifetime health advisory for the sum of PFOA and PFOS of 70 ng/L.
- The State of Delaware has designated PFOA and PFOS a hazardous substances as of July, 2018 and requires an investigation within 1,000 feet of affected facilities.

Mapping/Geospatial:

- Extent of potential affects. Maximum concentrations and magnitude of affect.
- Lithological layers higher permeability units, confining units.
- Affected wells, affected rivers and wetlands i.e. (Targets and Receptors)

Fate:

 PFASs is highly water soluble with weak soil sorption and exhibit recalcitrance to natural degradation, leading to the potential for large but narrow groundwater plumes.

Transport:

- Transport in sandy lithological layers and higher permeability units and confining units.
- PFAS compounds flow readily with a density close to water.
- High solubility.

Conceptual Model at the Blades Site

Site Inspection:

- Well Drilling 18 new well clusters (shallow, intermediate, deep)
- Collected 9 comingled surface water and sediment samples from the Morgan Branch stream and Nanticoke wetland area adjacent to the town.
- Collected groundwater samples from all 18 existing well pairs on the Procino facility.
- Review residential data from the 50 wells. (2 inch wells are installed 40-105 feet)

Conceptual Model at the Blades Site

Sampling Design at the Blades Site

Sampling Strategy at the Blades Site

- Resample the Town of Blades wells for the SI.
- 18 new SI wells
 - Shallow wells are to identify or to eliminate source areas.
 - Intermediate wells are to determine if the two facilities are comingled and to determine hydrological flow direction.
 - Deep wells are to determine if the facilities are comingled and the regional flow/pumping direction and cone of influence of the public wells.
 - Sample 18 existing wells on the Procino Plating facility to determine the extent of a release.
- Collect 9 comingled surface water and sediment samples.
- Review the method of transporting electroplating fluids through onsite water handling systems and onto the sewer system.
- Review site documents

Blades SI - Photographs

Blades SI - Photographs

Blades Groundwater Success Story

- Cooperative Agreement between EPA and DNREC allowed for open communication identifying contamination in the public wells.
- EPA, DNREC and the Town of Blades were able to provide safe drinking water in several days to the public once the sample results were available.
- DNREC and the town installed a public treatment system in several weeks after discovery of PFAS in the public and residential water system.
- EPA's removal group samples residential wells and provided the public with treatment systems.
- EPA is currently conducting the SI in consultation with DNREC.

Any Questions?

Connor O'Loughlin Site Assessment Manager EPA, Region 3 (215) 814-3304 oloughlin.connor@epa.gov

Nonresponsive based on revised scope

